Logo Icon

IPMAT Indore 2024 - QA (MCQ) Q22 Explanation

Author : Akash Kumar Singh

November 24, 2024

SHARE

Explanation:

(b) Given: BA = ‘c’

BD = ‘k’

∠BDA = θ (acute angle)

Now in △BDP, BP = k ∙ sinθ

Now in △ABD,

cos θ = x^2 +k^2 −c^2/2.x.k

2xk ⋅ cos θ = x^2 + k^2 - c^2

= x^2 −2x⋅k⋅cos θ+k^2 −c2 = 0

Solving the quadratic equation for x, we get

x = kcosθ ±√c^2−k^2sin2 θ

Now, the area of the ∆ABC = 1/2 × 2x × ksinθ

= x ∙ ksinθ

= (kcosθ±√c^2 −k^2sin^2θ ) ⋅ ksinθ

= k^2sinθcosθ ± ksinθ ⋅ √c^2 −k^2sin^2θ

= 1/2 k^22sinθcosθ ± ksinθ.√c^2 −k^2sin^2θ

=1/2 k^2 sin^2θ ±ksinθ ⋅ √c^2 −k^2sin^2θ

 =1/2 k^2sin^2θ± ksinθ ⋅ √c^2 − k^2sin2θ .

Hence option (b). Ans.