December 6, 2024
Explanation:
(199)
If f(n)= 1 + 2 + 3 +……..+(n+1)
g(n) = ∑ 1 𝑓(𝑘) 𝑘=𝑛 𝑘=1
Put n = 1, f (1) = 1 + 2 = 3
Put n = , f (2) = 1 + 2 + 3 = 6,
Put n = 3, f (3) = 1 + 2 + 3 + 4 = 10.
∑ 1 𝑓(𝑘) 𝑘=𝑛 𝑘−1 = 1/𝑓(1) + 1/𝑓(2) + 1/𝑓(3) +⋯……… 1/𝑓(𝑛)
As per the question, 1/𝑓(1) + 1/𝑓(2) + 1/𝑓(3) +⋯……… 1/𝑓(𝑛) > 99/100
⇒ 1/1+2 + 1/1+2+3 + 1/1+2+3+4 ……+ 1/1+2+3+⋯+𝑛+(𝑛+1) > 99/100
1/3 +1/6 +1/10 …….+ 1/[ (𝑛+1)(𝑛+2)/2 ] > 99/100
Adding 1 to both sides, we get
1 +1/3 +1/6 +1/10 +⋯….+ 1/[ (𝑛+1)(𝑛+2)/2 ] > 99/100 + 1
2/2 [1+ 1/3 +1/6 +1/10 +⋯….+ 1/[ (𝑛+1)(𝑛+2)/2 ] ]> 199/100
2 [1/2 +1/6 +1/12 + 1/20 +⋯….+ 1/(𝑛+1)(𝑛+2) ]> 199/100
2 [(1−1/2 )+(1/2 −1/3 )+(1/3 −1/4 )+⋯….+( 1/𝑛+1 − 1/𝑛+2 )] > 199/100
1− 1/𝑛+2 > 199/200
n+1/𝑛+2 > 199/200
⇒ 200n + 200 > 199 n+ 398
n > 198 ∴ least value of n = 199. Ans.