December 26, 2024
Explanation:
100)
Given sinα + sinβ = √2/√3
Squaring both sides, we get (sinα + sinβ)^2 + sin^2β + 2sinα.sinβ = 2/3 ...........(1)
&
cosα + cosβ = 1/√3
(cosα + cosβ)^2 = (1/√3)^2
= cos^2α + cos^2β + 2cosα.cosβ = 1/3 ..............(2)
Adding equations (1) and (2), we get
(sinα + sinβ)^2 + sin^2β + 2sinαsinβ + cos^2α + cos^2β + 2cosα.cosβ
= 1
= 1 + 1 + 2 [sinα.sinβ + cosα.cosβ] = 1
= 2 cos(α - β) = -1
= cos(α - β) = −1/2
= 2 cos^2 (α−β/2) -1 = −1/2 [∵ cos2A = cos2A-1]
= 2 cos^2 (α−β/2) = 1/2
= cos^2 (α−β/2) = 1/4
We have to find the values of (20cos(α−β/2))^2
(20cos(α−β/2))^2 = (20)^2 cos^2(α−β/2)
= 400 × 1/4
= 100.