December 31, 2024
Explanation:
(a)
∵ a1, a2, a3 are in geometric progression.
a2/a1 = a3/a2 = r
a2 = a1r − (i)
a3 = a2r = a1r2 −(ii)
Given: a1 x^2 + 2a2x + a3 = 0
Putting the values of a2 and a3 in above equation, we get
a1x^2 + 2a1rx + a1r^2 = 0
a1(x^2 + 2râ‹…x + r^2) = 0
a1(x+r)^2 = 0
a1 ≠0 ∴ x+r = 0
x = −r.
Let -r be the common root of given two equations.
Then b1x^2 + 2b2x + b3 = 0 can be written as:
b1r^2 − 2b2r + b3 = 0
b1r^2 + b3 = 2b2r from −(ii)
b1. a3/a1 + b3= 2b2â‹… a3/a2
b1/a3 a3/a1 + b3/a3 = 2b2/a3 a3/a2
b1/a1 + b3/a3 = 2b2/a2
b1/a1 , b2/a2 , b3/a3 are in arithmetic progression. Ans.
Note : If x, y, z are in A.P. then x+z=2y