Logo Icon

IPMAT Indore 2023 - QA (MCQ) Q31 Explanation

Author : Akash Kumar Singh

December 31, 2024

SHARE

Explanation:

(b)

IPMAT PYPs

As per the Apollonius theorem for a triangle ABC where D is mid-point of side BC,

AB^2 + AC^2 = 2[BD^2 + 4D^2]

(2x^2) + (3x)^2 = 2[(2x)^2+AD^2]

13x^2/2 − (2x)^2 = AD^2

∴ AD = âˆš5/2 x

Applying Pythagoras theorem in right angled â–³ AMB and â–³ AMC we get

AM^2 = AB^2 – BM^2 …. (1)

AM^2 = AC^2 – MC^2 …. (2)

Now since LHS is equal, RHS should also be equal.

∴ AB^2 – BM^2 = AC^2 – MC^2

⇒ (2x)^2 − k^2 = (3x)^2 − (4x−k)^2

⇒ 4x^2 − k^2 = 9x^2 − 16x^2 − k^2 + 8xk

⇒ 8xk = 11x^2

∴ BM = k = 11/8 x

⇒Thus, BM/AD = 11x/8 / √(5/2 )x = 11/ 4√10 Ans.